Search results for "Nearest neighbour"
showing 10 items of 19 documents
Alignment Free Dissimilarities for Nucleosome Classification
2016
Epigenetic mechanisms such as nucleosome positioning, histone modifications and DNA methylation play an important role in the regulation of cell type-specific gene activities, yet how epigenetic patterns are established and maintained remains poorly understood. Recent studies have shown a role of DNA sequences in recruitment of epigenetic regulators. For this reason, the use of more suitable similarities or dissimilarity between DNA sequences could help in the context of epigenetic studies. In particular, alignment-free dissimilarities have already been successfully applied to identify distinct sequence features that are associated with epigenetic patterns and to predict epigenomic profiles…
A one class KNN for signal identification: a biological case study
2009
The paper describes an application of a one class KNN to identify different signal patterns embedded in a noise structured background. The problem becomes harder whenever only one pattern is well-represented in the signal; in such cases, one class classifier techniques are more indicated. The classification phase is applied after a preprocessing phase based on a multi layer model (MLM) that provides preliminary signal segmentation in an interval feature space. The one class KNN has been tested on synthetic and real (Saccharomyces cerevisiae) microarray data in the specific problem of DNA nucleosome and linker regions identification. Results have shown, in both cases, a good recognition rate.
Finite Point Processes
2008
Assessing Causality in normal and impaired short-term cardiovascular regulation via nonlinear prediction methods
2009
We investigated the ability of mutual nonlinear prediction methods to assess causal interactions in short-term cardiovascular variability during normal and impaired conditions. Directional interactions between heart period (RR interval of the ECG) and systolic arterial pressure (SAP) short-term variability series were quantified as the cross-predictability (CP) of one series given the other, and as the predictability improvement (PI) yielded by the inclusion of samples of one series into the prediction of the other series. Nonlinear prediction was performed through global approximation (GA), approximation with locally constant models (LA0) and approximation with locally linear models (LA1) …
From the nearest neighbour rule to decision trees
1998
This paper proposes an algorithm to design a tree-like classifier whose result is equivalent to that achieved by the classical Nearest Neighbour rule. The procedure consists of a particular decomposition of a d-dimensional feature space into a set of convex regions with prototypes from just one class. Some experimental results over synthetic and real databases are provided in order to illustrate the applicability of the method.
Superior Performances of the Neural Network on the Masses Lesions Classification through Morphological Lesion Differences
2007
Purpose of this work is to develop an automatic classification system that could be useful for radiologists in the breast cancer investigation. The software has been designed in the framework of the MAGIC-5 collaboration. In an automatic classification system the suspicious regions with high probability to include a lesion are extracted from the image as regions of interest (ROIs). Each ROI is characterized by some features based generally on morphological lesion differences. A study in the space features representation is made and some classifiers are tested to distinguish the pathological regions from the healthy ones. The results provided in terms of sensitivity and specificity will be p…
Massive Lesions Classification using Features based on Morphological Lesion Differences
2007
Purpose of this work is the development of an automatic classification system which could be useful for radiologists in the investigation of breast cancer. The software has been designed in the framework of the MAGIC-5 collaboration. In the automatic classification system the suspicious regions with high probability to include a lesion are extracted from the image as regions of interest (ROIs). Each ROI is characterized by some features based on morphological lesion differences. Some classifiers as a Feed Forward Neural Network, a K-Nearest Neighbours and a Support Vector Machine are used to distinguish the pathological records from the healthy ones. The results obtained in terms of sensiti…
A crop field modeling to simulate agronomic images
2010
In precision agriculture, crop/weed discrimination is often based on image analysis but though several algorithms using spatial information have been proposed, not any has been tested on relevant databases. A simple model that simulates virtual fields is developed to evaluate these algorithms. Virtual fields are made of crops, arranged according to agricultural practices and represented by simple patterns, and weeds that are spatially distributed using a statistical approach. Then, experimental devices using cameras are simulated with a pinhole model. Its ability to characterize the spatial reality is demonstrated through different pairs (real, virtual) of pictures. Two spatial descriptors …
Stationary Point Processes
2008
Estimation of total electricity consumption curves by sampling in a finite population when some trajectories are partially unobserved
2019
International audience; Millions of smart meters that are able to collect individual load curves, that is, electricity consumption time series, of residential and business customers at fine scale time grids are now deployed by electricity companies all around the world. It may be complex and costly to transmit and exploit such a large quantity of information, therefore it can be relevant to use survey sampling techniques to estimate mean load curves of specific groups of customers. Data collection, like every mass process, may undergo technical problems at every point of the metering and collection chain resulting in missing values. We consider imputation approaches (linear interpolation, k…